Agenda

- Mike Heroux, Sandia, HPCG Performance Tuning Overview
- Yutong Lu, NUDT, Tianhe–2 Efforts.
- Kiyoshi Kumahata, RIKEN, K Machine Efforts.
- Massimiliano Fatica, Nvidia, Nvidia Efforts.
- Jongsoo Park, Intel, Intel Efforts
- Audience Discussion
- Jack Dongarra, Piotr Luszczek, Mike Heroux, Announcement of Results, Awards.

hpcg-benchmark.org

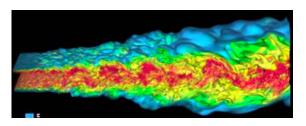
HPCG: TOWARD A NEW (OR ANOTHER) METRIC FOR RANKING HIGH PERFORMANCE COMPUTING SYSTEMS

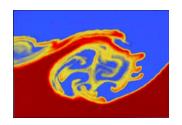
Jack Dongarra & Piotr Luszczek University of Tennessee/ORNL

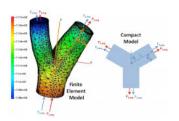
Michael Heroux Sandia National Labs

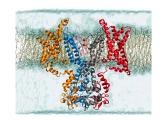
Goals for New Benchmark

 Augment the TOP500 listing with a benchmark that correlates with important scientific and technical apps not well represented by HPL









- Encourage vendors to focus on architecture features needed for high performance on those important scientific and technical apps.
 - Stress a balance of floating point and communication bandwidth and latency
 - Reward investment in high performance collective ops
 - Reward investment in high performance point-to-point messages of various sizes
 - Reward investment in local memory system performance
 - Reward investment in parallel runtimes that facilitate intra-node parallelism
- Provide an outreach/communication tool
 - Easy to understand
 - Easy to optimize
 - Easy to implement, run, and check results
- Provide a historical database of performance information
 - The new benchmark should have longevity

Proposal: HPCG

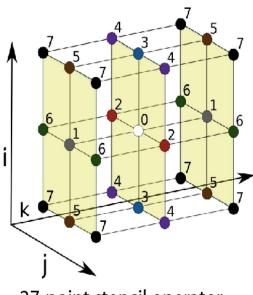
- High Performance Conjugate Gradient (HPCG).
- Solves Ax=b, A large, sparse, b known, x computed.
- An optimized implementation of PCG contains essential computational and communication patterns that are prevalent in a variety of methods for discretization and numerical solution of PDEs

Patterns:

- Dense and sparse computations.
- Dense and sparse collective.
- Multi-scale execution of kernels via MG (truncated) V cycle.
- Data-driven parallelism (unstructured sparse triangular solves).
- Strong verification and validation properties (via spectral properties of PCG).

Model Problem Description

- Synthetic discretized 3D PDE (FEM, FVM, FDM).
- Single DOF heat diffusion model.
- Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.
- Local domain: $(n_x \times n_y \times n_z)$
- Process layout: $(np_x \times np_y \times np_z)$
- Global domain: $(n_x * np_x) \times (n_y * np_y) \times (n_z * np_z)$
- Sparse matrix:
 - 27 nonzeros/row interior.
 - 8 18 on boundary.
 - Symmetric positive definite.



27-point stencil operator

HPCG Design Philosophy

- Relevance to broad collection of important apps.
- Simple, single number.
- Few user-tunable parameters and algorithms:
 - The system, not benchmarker skill, should be primary factor in result.
 - Algorithmic tricks don't give us relevant information.
- Algorithm (PCG) is vehicle for organizing:
 - Known set of kernels.
 - Core compute and data patterns.
 - Tunable over time (as was HPL).
- Easy-to-modify:
 - _ref kernels called by benchmark kernels.
 - User can easily replace with custom versions.
 - Clear policy: Only kernels with _ref versions can be modified.

PCG ALGORITHM

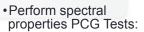
- **♦** Loop i = 1, 2, ...
 - $\circ z_i := M^{-1}r_{i-1}$
 - \circ if i = 1
 - $p_i := z_i$
 - $\alpha_i := \text{dot_product}(r_{i-1}, z)$
 - o else
 - $\quad \bullet \quad \alpha_i := \text{dot_product}(r_{i-1}, z)$
 - $lacksquare eta_i := lpha_i / lpha_{i-1}$
 - $p_i := \beta_i * p_{i-l} + z_i$
 - o end if
 - $\circ \alpha_i := \text{dot_product}(r_{i-1}, z_i) / \text{dot_product}(p_i, A * p_i)$
 - $\circ x_{i+1} := x_i + \alpha_i * p_i$
 - $\circ r_i := r_{i-1} \alpha_i A^* p_i$
 - o if $||r_i||_2 <$ tolerance then Stop
- end Loop

Problem Setup

- Construct Geometry.
- Generate Problem.
- Setup Halo Exchange.
- •Initialize Sparse Meta-data.
- Call user-defined
 OptimizeProblem function.

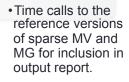
 This function permits the
 user to change data
 structures and perform
 permutation that can improve
 execution.

Validation Testing



- Convergence for 10 distinct eigenvalues:
- · No preconditioning.
- With Preconditioning
- Symmetry tests:
- Sparse MV kernel.
- •MG kernel.

Reference Sparse MV and Gauss-Seidel kernel timing.



Reference CG timing and residual reduction.

- Time the execution of 50 iterations of the reference PCG implementation.
- Record reduction of residual using the reference implementation. The optimized code must attain the same residual reduction, even if more iterations are required.

Execution: 7 Phases

Optimized CG Setup.

- Run one set of Optimized PCG solver to determine number of iterations required to reach residual reduction of reference PCG.
- Record iteration count as numberOfOptCglters.
- Detect failure to converge.
- Compute how many sets of Optimized PCG Solver are required to fill benchmark timespan. Record as numberOfCgSets

Optimized CG timing and analysis.

- Run numberOfCgSets calls to optimized PCG solver with numberOfOptCgIters iterations.
- •For each set, record residual norm.
- ·Record total time.
- Compute mean and variance of residual values.

Report results

- Write a log file for diagnostics and debugging.
- Write a benchmark results file for reporting official information.

Problem Setup

- Construct Geometry.
- Generate Problem.
- Setup Halo Exchange.
 - Use symmetry to eliminate communication in this phase.
 - C++ STL containers/algorithms: Simple code, force use of C++.
- Initialize Sparse Meta-data.

- Temporarily modify matrix diagonals:
 - (2.0e6, 3.0e6, ... 9.0e6, 1.0e6, ...1.0e6).
 - Offdiagonal still -1.0.
 - Matrix looks diagonal with 10 distinct eigenvalues.
- Perform spectral properties PCG Tests:
 - Convergence for 10 distinct eigenvalues:
 - No preconditioning: About 10 iters.
 - With Preconditioning: About 1 iter.
- Symmetry tests:
 - Matrix, preconditioner are symmetric.
 - Sparse MV kernel.

• MG kernel.

$$x^T A y = y^T A x$$

$$x^T M^{-1} y = y^T M^{-1} x$$

Reference Sparse MV and Gauss-Seidel kernel timing.

 Time calls to the reference versions of sparse MV and MG for inclusion in output report.

Reference CG timing and residual reduction.

- Time the execution of 50 iterations of the reference CG implementation.
- Record reduction of residual using the reference implementation.
- The optimized code must attain the same residual reduction, even if more iterations are required.
 - Most graph coloring algorithms improve parallel execution at the expense of increasing iteration counts.

Optimized CG Setup.

- Call user-defined OptimizeProblem function.
 - Permits the user to change data structures and perform permutation that can improve execution.
- Run one set of Optimized PCG solver to determine number of iterations required to reach residual reduction of reference PCG.
- Record iteration count as numberOfOptCglters.
- Detect failure to converge.
- Compute how many sets of Optimized PCG Solver are required to fill benchmark timespan. Record as numberOfCgSets

Optimized CG timing and analysis.

- Run numberOfCgSets calls to optimized PCG solver with numberOfOptCgIters iterations.
- For each set, record residual norm.
- Record total time.
- Compute mean and variance of residual values.

Report results

- Write a log file for diagnostics and debugging.
- Write a benchmark results file for reporting official information.

What can be optimized? _ref

CG_ref.hpp
ComputeDotProduct_ref.hpp
ComputeMG_ref.hpp
ComputeProlongation_ref.hpp
ComputeRestriction_ref.hpp
ComputeSPMV_ref.hpp
ComputeSYMGS_ref.hpp
ComputeWAXPBY_ref.hpp
GenerateLevelMatrix_ref.hpp

Key Computation Data Patterns

- Domain decomposition:
 - SPMD (MPI): Across domains.
 - Thread/vector (OpenMP, compiler): Within domains.

Vector ops:

- AXPY: Simple streaming memory ops.
- DOT/NRM2 : Blocking Collectives.

Matrix ops:

- SpMV: Classic sparse kernel (option to reformat).
- Symmetric Gauss-Seidel: sparse triangular sweep.
 - Exposes real application tradeoffs:
 - threading & convergence vs. SPMD and scaling.
 - Enables leverage of new parallel patterns, e.g., futures.

Merits of HPCG

- Includes major communication/computational patterns.
 - Represents a minimal collection of the major patterns.
- Rewards investment in:
 - High-performance collective ops.
 - Local memory system performance.
 - Low latency cooperative threading.
- Detects/measures variances from bitwise reproducibility.
- Executes kernels at several (tunable) granularities:
 - nx = ny = nz = 104 gives
 - nlocal = 1,124,864; 140,608; 17,576; 2,197
 - ComputeSymGS with multicoloring adds one more level:
 - 8 colors.
 - Average size of color = 275.
 - Size ratio (largest:smallest): 4096
 - Provide a "natural" incentive to run a big problem.

Impact of HPCG design points

- Global collective:
 - Large variation in runtimes on some networks.
 - Limits performance on several systems.
- Neighborhood collective:
 - Significant impact on one system's results.
 - Does not impact HPL performance.
- Gauss-Seidel kernel:
 - High throughput variants do more iterations: 58 vs. 50.
- Significant variation vs. HPL (come tomorrow).

Note: One additional design consideration:

- True finite volume/element construction.
 - Higher flop, int instruction rates.
 - Some interesting computational, data access patterns.
 - May make HPCG more representative for some apps.

HPCG and HPL

- We are NOT proposing to eliminate HPL as a metric.
- The historical importance and community outreach value is too important to abandon.
- HPCG will serve as an alternate ranking of the Top500.
 - Similar perhaps to the Green500 listing.

HPL vs. HPCG: Bookends

- Some see HPL and HPCG as "bookends" of a spectrum.
 - Applications teams know where their codes lie on the spectrum.
 - Can gauge performance on a system using both HPL and HPCG numbers.

Signs of Uptake

- Discussions with and results from every vendor.
- Major, deep technical discussions with several.
- Same with most LCFs.
- SC'14 BOF on Optimizing HPCG.
- One ISC'14 and two SC'14 papers submitted.
 - Nvidia and Intel.
- Optimized results for MIC-based, Nvidia GPU-based systems.
- Increase from 15 to 25 systems on the list.
- Improved numbers for many previous systems.

Versions of HPCG

- Reference version on GitHub:
 - https://github.com/hpcg-benchmark/hpcg
 - Website: hpcg-benchark.org
 - Mail list hpcg.benchmark@gmail.com
- Intel
 - MKL has packaged CPU version of HPCG
 - See: http://bit.ly/hpcg-intel
 - In the process of packaging Xeon Phi version. Released?
- Nvidia
- Bull

HPCG Tech Reports

Toward a New Metric for Ranking High Performance Computing Systems

Jack Dongarra and Michael Heroux

HPCG Technical Specification

Jack Dongarra, Michael Heroux, Piotr Luszczek

hpcg-benchmark.org

SANDIA REPORT

SAND2013-8752 Unlimited Release Printed October 2013

HPCG Technical Specification

Michael A. Heroux, Sandia National Laboratories¹ Jack Dongarra and Piotr Luszczek, University of Tennessee

Prepared by

SANDIA REPORT

SAND2013-4744 Unlimited Release Printed June 2013

Toward a New Metric for Ranking High Performance Computing Systems

Jack Dongarra, University of Tennessee Michael A. Heroux, Sandia National Laboratories

Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-9444.85000.

Approved for public release; further dissemination unlimited

Sandia National Laboratories

Corresponding Author, maherou@sandia.gov