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Agenda 
• Mike Heroux, Sandia, HPCG Performance Tuning Overview 
• Yutong Lu, NUDT, Tianhe–2 Efforts. 
• Kiyoshi Kumahata, RIKEN, K Machine Efforts. 
• Massimiliano Fatica, Nvidia, Nvidia Efforts. 
•  Jongsoo Park, Intel, Intel Efforts 
• Audience Discussion 
•  Jack Dongarra, Piotr Luszczek, Mike Heroux, Announcement 

of Results, Awards.  

1 



HPCG: TOWARD A NEW (OR 
ANOTHER) METRIC FOR 
RANKING HIGH 
PERFORMANCE 
COMPUTING SYSTEMS 
Jack Dongarra & Piotr Luszczek 
University of Tennessee/ORNL 
 
Michael Heroux 
Sandia National Labs 
 
 

2 hpcg-benchmark.org 



hpcg-benchmark.org 

Goals for New Benchmark 
•  Augment the TOP500 listing with a benchmark that correlates with important 

scientific and technical apps not well represented by HPL 

 
•  Encourage vendors to focus on architecture features needed for high 

performance on those important scientific and technical apps. 
•  Stress a balance of floating point and communication bandwidth and latency 
•  Reward investment in high performance collective ops 
•  Reward investment in high performance point-to-point messages of various sizes 
•  Reward investment in local memory system performance 
•  Reward investment in parallel runtimes that facilitate intra-node parallelism 

•  Provide an outreach/communication tool 
•  Easy to understand 
•  Easy to optimize 
•  Easy to implement, run, and check results 

•  Provide a historical database of performance information 
•  The new benchmark should have longevity 
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Proposal: HPCG 
• High Performance Conjugate Gradient (HPCG). 
• Solves Ax=b, A large, sparse, b known, x computed. 
• An optimized implementation of PCG contains essential 

computational and communication patterns that are 
prevalent in a variety of methods for discretization and 
numerical solution of PDEs  

 
• Patterns: 

•  Dense and sparse computations. 
•  Dense and sparse collective. 
•  Multi-scale execution of kernels via MG (truncated) V cycle. 
•  Data-driven parallelism (unstructured sparse triangular solves). 

• Strong verification and validation properties (via spectral 
properties of PCG). 
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Model Problem Description 
• Synthetic discretized 3D PDE (FEM, FVM, FDM). 
• Single DOF heat diffusion model. 
• Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1. 
•  Local domain: 
• Process layout: 
• Global domain: 
• Sparse matrix:  

•  27 nonzeros/row interior.  
•  8 – 18 on boundary. 
•  Symmetric positive definite. 

(nx × ny × nz )

(npx × npy × npz )

(nx *npx )× (ny *npy )× (nz *npz )
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HPCG Design Philosophy 
• Relevance to broad collection of important apps. 
• Simple, single number. 
•  Few user-tunable parameters and algorithms: 

•  The system, not benchmarker skill, should be primary factor in result. 
•  Algorithmic tricks don’t give us relevant information. 

• Algorithm (PCG) is vehicle for organizing: 
•  Known set of kernels. 
•  Core compute and data patterns. 
•  Tunable over time (as was HPL). 

• Easy-to-modify: 
•  _ref kernels called by benchmark kernels. 
•  User can easily replace with custom versions. 
•  Clear policy: Only kernels with _ref versions can be modified. 
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PCG ALGORITHM 
u p0 := x0, r0 := b-Ap0 
u Loop i = 1, 2, … 

o  zi := M-1ri-1 
o  if i = 1 

§  pi := zi 
§ αi := dot_product(ri-1, z) 

o  else 
§ αi := dot_product(ri-1, z) 
§ βi := αi/αi-1 
§  pi := βi*pi-1+zi 

o  end if 
o  αi := dot_product(ri-1, zi) /dot_product(pi, A*pi) 
o  xi+1 := xi + αi*pi 
o  ri := ri-1 – αi*A*pi 
o  if ||ri||2 < tolerance then Stop 

u end Loop 
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Problem Setup 

• Construct Geometry. 
• Generate Problem. 
• Setup Halo Exchange. 
• Initialize Sparse Meta-data. 
• Call user-defined 
OptimizeProblem function.  
This function permits the 
user to change data 
structures and perform 
permutation that can improve 
execution. 

Validation Testing 

• Perform spectral 
properties PCG Tests: 
• Convergence for 10 
distinct eigenvalues: 
•  No preconditioning. 
• With Preconditioning 

• Symmetry tests: 
• Sparse MV kernel. 
• MG kernel. 

Reference Sparse MV 
and Gauss-Seidel 
kernel timing. 

• Time calls to the 
reference versions 
of sparse MV and 
MG for inclusion in 
output report. 

Reference CG timing 
and residual 
reduction. 

• Time the execution 
of 50 iterations of 
the reference PCG 
implementation. 

• Record reduction of 
residual using the 
reference 
implementation.  
The optimized code 
must attain the 
same residual 
reduction, even if 
more iterations are 
required. 

Optimized CG Setup.   

• Run one set of Optimized PCG 
solver to determine number of 
iterations required to reach residual 
reduction of reference PCG. 

• Record iteration count as 
numberOfOptCgIters. 

• Detect failure to converge. 
• Compute how many sets of 
Optimized PCG Solver are required 
to fill benchmark timespan. Record 
as numberOfCgSets 

Optimized CG timing and 
analysis. 

• Run numberOfCgSets 
calls to optimized PCG 
solver with 
numberOfOptCgIters 
iterations. 

• For each set, record 
residual norm. 

• Record total time. 
• Compute mean and 
variance of residual 
values. 

Report results 

• Write a log file for 
diagnostics and 
debugging. 

• Write a benchmark 
results file for reporting 
official information. 
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Problem Setup 

•  Construct Geometry. 
•  Generate Problem. 
•  Setup Halo Exchange. 

•  Use symmetry to eliminate communication in 
this phase. 

•  C++ STL containers/algorithms: Simple code, 
force use of C++. 

•  Initialize Sparse Meta-data. 
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Validation Testing 

•  Temporarily modify matrix diagonals: 
•  (2.0e6, 3.0e6, … 9.0e6, 1.0e6, …1.0e6). 
•  Offdiagonal still -1.0. 
•  Matrix looks diagonal with 10 distinct eigenvalues. 

•  Perform spectral properties PCG Tests: 
•  Convergence for 10 distinct eigenvalues: 

•   No preconditioning: About 10 iters. 
•  With Preconditioning: About 1 iter. 

•  Symmetry tests: 
•  Matrix, preconditioner are symmetric. 
•  Sparse MV kernel. 
•  MG kernel. 

xT Ay = yT Ax

xTM −1y = yTM −1x
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Reference Sparse MV and 
Gauss-Seidel kernel timing. 

• Time calls to the reference 
versions of sparse MV and MG 
for inclusion in output report. 
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Reference CG timing and residual reduction. 

•  Time the execution of 50 iterations of the 
reference CG implementation. 

• Record reduction of residual using the 
reference implementation.   

•  The optimized code must attain the same 
residual reduction, even if more iterations are 
required. 
• Most graph coloring algorithms improve 

parallel execution at the expense of 
increasing iteration counts. 



Optimized CG Setup.   

•  Call user-defined OptimizeProblem function.   
•  Permits the user to change data structures and perform 

permutation that can improve execution. 
•  Run one set of Optimized PCG solver to determine number of 

iterations required to reach residual reduction of reference PCG. 
•  Record iteration count as numberOfOptCgIters. 
•  Detect failure to converge. 
•  Compute how many sets of Optimized PCG Solver are required to 

fill benchmark timespan. Record as numberOfCgSets 



Optimized CG timing and analysis. 

• Run numberOfCgSets calls to 
optimized PCG solver with 
numberOfOptCgIters iterations. 

•  For each set, record residual 
norm. 

• Record total time. 
• Compute mean and variance of 

residual values. 



Report results 

• Write a log file for 
diagnostics and 
debugging. 

• Write a benchmark 
results file for reporting 
official information. 
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What can be optimized? _ref 
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CG_ref.hpp 
ComputeDotProduct_ref.hpp 
ComputeMG_ref.hpp 
ComputeProlongation_ref.hpp 
ComputeRestriction_ref.hpp 
ComputeSPMV_ref.hpp 
ComputeSYMGS_ref.hpp 
ComputeWAXPBY_ref.hpp 
GenerateLevelMatrix_ref.hpp 



Key Computation Data Patterns 
• Domain decomposition: 

•  SPMD (MPI): Across domains. 
•  Thread/vector (OpenMP, compiler): Within domains. 

• Vector ops: 
•  AXPY: Simple streaming memory ops. 
•  DOT/NRM2 : Blocking Collectives. 

• Matrix ops: 
•  SpMV: Classic sparse kernel (option to reformat). 
•  Symmetric Gauss-Seidel: sparse triangular sweep. 

•  Exposes real application tradeoffs:  
•  threading & convergence vs. SPMD and scaling. 

•  Enables leverage of new parallel patterns, e.g., futures. 
17 
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Merits of HPCG 
•  Includes major communication/computational patterns. 

•  Represents a minimal collection of the major patterns. 

• Rewards investment in: 
•  High-performance collective ops. 
•  Local memory system performance. 
•  Low latency cooperative threading. 

• Detects/measures variances from bitwise reproducibility. 
• Executes kernels at several (tunable) granularities: 

•  nx = ny = nz = 104 gives 
•  nlocal = 1,124,864; 140,608; 17,576; 2,197 
•  ComputeSymGS with multicoloring adds one more level: 

•  8 colors. 
•  Average size of color = 275.   
•  Size ratio (largest:smallest): 4096 

•  Provide a “natural” incentive to run a big problem. 18 
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Impact of HPCG design points 
• Global collective:  

•  Large variation in runtimes on some networks. 
•  Limits performance on several systems. 

• Neighborhood collective: 
•  Significant impact on one system’s results. 
•  Does not impact HPL performance. 

• Gauss-Seidel kernel: 
•  High throughput variants do more iterations: 58 vs. 50. 

• Significant variation vs. HPL (come tomorrow). 
 

• Note: One additional design consideration: 
•  True finite volume/element construction. 

•  Higher flop, int instruction rates. 
•  Some interesting computational, data access patterns. 
•  May make HPCG more representative for some apps. 19 
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HPCG and HPL 
• We are NOT proposing to eliminate HPL as a metric. 

• The historical importance and community outreach value 
is too important to abandon. 

• HPCG will serve as an alternate ranking of the Top500. 
•  Similar perhaps to the Green500 listing. 

20 
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HPL vs. HPCG: Bookends 
• Some see HPL and HPCG as “bookends” of a spectrum. 

•  Applications teams know where their codes lie on the spectrum. 
•  Can gauge performance on a system using both HPL and HPCG 

numbers. 
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Signs of Uptake 
• Discussions with and results from every vendor. 
• Major, deep technical discussions with several. 
• Same with most LCFs. 
• SC’14 BOF on Optimizing HPCG. 
• One ISC’14 and two SC’14 papers submitted. 

•  Nvidia and Intel. 
• Optimized results for MIC-based, Nvidia GPU-based 

systems. 
•  Increase from 15 to 25 systems on the list. 
•  Improved numbers for many previous systems. 
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Versions of HPCG 
• Reference version on GitHub: 

•  https://github.com/hpcg-benchmark/hpcg  
•  Website:  hpcg-benchark.org 
•  Mail list hpcg.benchmark@gmail.com  

•  Intel 
•  MKL has packaged CPU version of HPCG 

•  See: http://bit.ly/hpcg-intel  
•  In the process of packaging Xeon Phi version.  Released? 

• Nvidia 
• Bull 
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HPCG Tech Reports  
Toward a New Metric for Ranking  
High Performance Computing Systems 

•  Jack Dongarra and Michael Heroux 
HPCG Technical Specification 
•  Jack Dongarra, Michael Heroux,  

Piotr Luszczek 
 

 
 
 
 
 
•  hpcg-benchmark.org 
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