
hpcg-benchmark.org

Agenda
• Mike Heroux, Sandia, HPCG Performance Tuning Overview
• Yutong Lu, NUDT, Tianhe–2 Efforts.
• Kiyoshi Kumahata, RIKEN, K Machine Efforts.
• Massimiliano Fatica, Nvidia, Nvidia Efforts.
•  Jongsoo Park, Intel, Intel Efforts
• Audience Discussion
•  Jack Dongarra, Piotr Luszczek, Mike Heroux, Announcement

of Results, Awards.

1

HPCG: TOWARD A NEW (OR
ANOTHER) METRIC FOR
RANKING HIGH
PERFORMANCE
COMPUTING SYSTEMS
Jack Dongarra & Piotr Luszczek
University of Tennessee/ORNL

Michael Heroux
Sandia National Labs

2 hpcg-benchmark.org

hpcg-benchmark.org

Goals for New Benchmark
•  Augment the TOP500 listing with a benchmark that correlates with important

scientific and technical apps not well represented by HPL

•  Encourage vendors to focus on architecture features needed for high

performance on those important scientific and technical apps.
•  Stress a balance of floating point and communication bandwidth and latency
•  Reward investment in high performance collective ops
•  Reward investment in high performance point-to-point messages of various sizes
•  Reward investment in local memory system performance
•  Reward investment in parallel runtimes that facilitate intra-node parallelism

•  Provide an outreach/communication tool
•  Easy to understand
•  Easy to optimize
•  Easy to implement, run, and check results

•  Provide a historical database of performance information
•  The new benchmark should have longevity

3

Proposal: HPCG
• High Performance Conjugate Gradient (HPCG).
• Solves Ax=b, A large, sparse, b known, x computed.
• An optimized implementation of PCG contains essential

computational and communication patterns that are
prevalent in a variety of methods for discretization and
numerical solution of PDEs

• Patterns:

•  Dense and sparse computations.
•  Dense and sparse collective.
•  Multi-scale execution of kernels via MG (truncated) V cycle.
•  Data-driven parallelism (unstructured sparse triangular solves).

• Strong verification and validation properties (via spectral
properties of PCG).

hpcg-benchmark.org 4

Model Problem Description
• Synthetic discretized 3D PDE (FEM, FVM, FDM).
• Single DOF heat diffusion model.
• Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.
•  Local domain:
• Process layout:
• Global domain:
• Sparse matrix:

•  27 nonzeros/row interior.
•  8 – 18 on boundary.
•  Symmetric positive definite.

(nx × ny × nz)

(npx × npy × npz)

(nx *npx)× (ny *npy)× (nz *npz)

hpcg-benchmark.org

HPCG Design Philosophy
• Relevance to broad collection of important apps.
• Simple, single number.
•  Few user-tunable parameters and algorithms:

•  The system, not benchmarker skill, should be primary factor in result.
•  Algorithmic tricks don’t give us relevant information.

• Algorithm (PCG) is vehicle for organizing:
•  Known set of kernels.
•  Core compute and data patterns.
•  Tunable over time (as was HPL).

• Easy-to-modify:
•  _ref kernels called by benchmark kernels.
•  User can easily replace with custom versions.
•  Clear policy: Only kernels with _ref versions can be modified.

hpcg-benchmark.org 6

PCG ALGORITHM
u p0 := x0, r0 := b-Ap0
u Loop i = 1, 2, …

o  zi := M-1ri-1
o  if i = 1

§  pi := zi
§ αi := dot_product(ri-1, z)

o  else
§ αi := dot_product(ri-1, z)
§ βi := αi/αi-1
§  pi := βi*pi-1+zi

o  end if
o  αi := dot_product(ri-1, zi) /dot_product(pi, A*pi)
o  xi+1 := xi + αi*pi
o  ri := ri-1 – αi*A*pi
o  if ||ri||2 < tolerance then Stop

u end Loop
	
 	

	
 	

	
 	

http://tiny.cc/hpcg 7

Problem Setup

• Construct Geometry.
• Generate Problem.
• Setup Halo Exchange.
• Initialize Sparse Meta-data.
• Call user-defined
OptimizeProblem function.
This function permits the
user to change data
structures and perform
permutation that can improve
execution.

Validation Testing

• Perform spectral
properties PCG Tests:
• Convergence for 10
distinct eigenvalues:
•  No preconditioning.
• With Preconditioning

• Symmetry tests:
• Sparse MV kernel.
• MG kernel.

Reference Sparse MV
and Gauss-Seidel
kernel timing.

• Time calls to the
reference versions
of sparse MV and
MG for inclusion in
output report.

Reference CG timing
and residual
reduction.

• Time the execution
of 50 iterations of
the reference PCG
implementation.

• Record reduction of
residual using the
reference
implementation.
The optimized code
must attain the
same residual
reduction, even if
more iterations are
required.

Optimized CG Setup.

• Run one set of Optimized PCG
solver to determine number of
iterations required to reach residual
reduction of reference PCG.

• Record iteration count as
numberOfOptCgIters.

• Detect failure to converge.
• Compute how many sets of
Optimized PCG Solver are required
to fill benchmark timespan. Record
as numberOfCgSets

Optimized CG timing and
analysis.

• Run numberOfCgSets
calls to optimized PCG
solver with
numberOfOptCgIters
iterations.

• For each set, record
residual norm.

• Record total time.
• Compute mean and
variance of residual
values.

Report results

• Write a log file for
diagnostics and
debugging.

• Write a benchmark
results file for reporting
official information.

http://tiny.cc/hpcg 8

Problem Setup

•  Construct Geometry.
•  Generate Problem.
•  Setup Halo Exchange.

•  Use symmetry to eliminate communication in
this phase.

•  C++ STL containers/algorithms: Simple code,
force use of C++.

•  Initialize Sparse Meta-data.

http://tiny.cc/hpcg 9

Validation Testing

•  Temporarily modify matrix diagonals:
•  (2.0e6, 3.0e6, … 9.0e6, 1.0e6, …1.0e6).
•  Offdiagonal still -1.0.
•  Matrix looks diagonal with 10 distinct eigenvalues.

•  Perform spectral properties PCG Tests:
•  Convergence for 10 distinct eigenvalues:

•  No preconditioning: About 10 iters.
•  With Preconditioning: About 1 iter.

•  Symmetry tests:
•  Matrix, preconditioner are symmetric.
•  Sparse MV kernel.
•  MG kernel.

xT Ay = yT Ax

xTM −1y = yTM −1x

http://tiny.cc/hpcg 10

Reference Sparse MV and
Gauss-Seidel kernel timing.

• Time calls to the reference
versions of sparse MV and MG
for inclusion in output report.

http://tiny.cc/hpcg 11

Reference CG timing and residual reduction.

•  Time the execution of 50 iterations of the
reference CG implementation.

• Record reduction of residual using the
reference implementation.

•  The optimized code must attain the same
residual reduction, even if more iterations are
required.
• Most graph coloring algorithms improve

parallel execution at the expense of
increasing iteration counts.

Optimized CG Setup.

•  Call user-defined OptimizeProblem function.
•  Permits the user to change data structures and perform

permutation that can improve execution.
•  Run one set of Optimized PCG solver to determine number of

iterations required to reach residual reduction of reference PCG.
•  Record iteration count as numberOfOptCgIters.
•  Detect failure to converge.
•  Compute how many sets of Optimized PCG Solver are required to

fill benchmark timespan. Record as numberOfCgSets

Optimized CG timing and analysis.

• Run numberOfCgSets calls to
optimized PCG solver with
numberOfOptCgIters iterations.

•  For each set, record residual
norm.

• Record total time.
• Compute mean and variance of

residual values.

Report results

• Write a log file for
diagnostics and
debugging.

• Write a benchmark
results file for reporting
official information.

http://tiny.cc/hpcg 15

What can be optimized? _ref

http://tiny.cc/hpcg 16

CG_ref.hpp
ComputeDotProduct_ref.hpp
ComputeMG_ref.hpp
ComputeProlongation_ref.hpp
ComputeRestriction_ref.hpp
ComputeSPMV_ref.hpp
ComputeSYMGS_ref.hpp
ComputeWAXPBY_ref.hpp
GenerateLevelMatrix_ref.hpp

Key Computation Data Patterns
• Domain decomposition:

•  SPMD (MPI): Across domains.
•  Thread/vector (OpenMP, compiler): Within domains.

• Vector ops:
•  AXPY: Simple streaming memory ops.
•  DOT/NRM2 : Blocking Collectives.

• Matrix ops:
•  SpMV: Classic sparse kernel (option to reformat).
•  Symmetric Gauss-Seidel: sparse triangular sweep.

•  Exposes real application tradeoffs:
•  threading & convergence vs. SPMD and scaling.

•  Enables leverage of new parallel patterns, e.g., futures.
17

hpcg-benchmark.org 17

Merits of HPCG
•  Includes major communication/computational patterns.

•  Represents a minimal collection of the major patterns.

• Rewards investment in:
•  High-performance collective ops.
•  Local memory system performance.
•  Low latency cooperative threading.

• Detects/measures variances from bitwise reproducibility.
• Executes kernels at several (tunable) granularities:

•  nx = ny = nz = 104 gives
•  nlocal = 1,124,864; 140,608; 17,576; 2,197
•  ComputeSymGS with multicoloring adds one more level:

•  8 colors.
•  Average size of color = 275.
•  Size ratio (largest:smallest): 4096

•  Provide a “natural” incentive to run a big problem. 18

hpcg-benchmark.org 18

Impact of HPCG design points
• Global collective:

•  Large variation in runtimes on some networks.
•  Limits performance on several systems.

• Neighborhood collective:
•  Significant impact on one system’s results.
•  Does not impact HPL performance.

• Gauss-Seidel kernel:
•  High throughput variants do more iterations: 58 vs. 50.

• Significant variation vs. HPL (come tomorrow).

• Note: One additional design consideration:
•  True finite volume/element construction.

•  Higher flop, int instruction rates.
•  Some interesting computational, data access patterns.
•  May make HPCG more representative for some apps. 19

hpcg-benchmark.org 19

HPCG and HPL
• We are NOT proposing to eliminate HPL as a metric.

• The historical importance and community outreach value
is too important to abandon.

• HPCG will serve as an alternate ranking of the Top500.
•  Similar perhaps to the Green500 listing.

20

hpcg-benchmark.org 20

HPL vs. HPCG: Bookends
• Some see HPL and HPCG as “bookends” of a spectrum.

•  Applications teams know where their codes lie on the spectrum.
•  Can gauge performance on a system using both HPL and HPCG

numbers.

hpcg-benchmark.org 21

Signs of Uptake
• Discussions with and results from every vendor.
• Major, deep technical discussions with several.
• Same with most LCFs.
• SC’14 BOF on Optimizing HPCG.
• One ISC’14 and two SC’14 papers submitted.

•  Nvidia and Intel.
• Optimized results for MIC-based, Nvidia GPU-based

systems.
•  Increase from 15 to 25 systems on the list.
•  Improved numbers for many previous systems.

hpcg-benchmark.org 22

Versions of HPCG
• Reference version on GitHub:

•  https://github.com/hpcg-benchmark/hpcg
•  Website: hpcg-benchark.org
•  Mail list hpcg.benchmark@gmail.com

•  Intel
•  MKL has packaged CPU version of HPCG

•  See: http://bit.ly/hpcg-intel
•  In the process of packaging Xeon Phi version. Released?

• Nvidia
• Bull

23

HPCG Tech Reports
Toward a New Metric for Ranking
High Performance Computing Systems

•  Jack Dongarra and Michael Heroux
HPCG Technical Specification
•  Jack Dongarra, Michael Heroux,

Piotr Luszczek

•  hpcg-benchmark.org

24

hpcg-benchmark.org 24

SANDIA REPORT
SAND2013-!8752
Unlimited Release
Printed October 2013

HPCG Technical Specification

Michael A. Heroux, Sandia National Laboratories1
Jack Dongarra and Piotr Luszczek, University of Tennessee

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

!

!!
1 Corresponding Author, maherou@sandia.gov

